HYPERBOLIC EQUATION OF THERMAL CONDUCTIVITY.
SOLUTION OF THE DIRECT AND INVERSE PROBLEMS
FOR A SEMIINFINITE BAR
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The first and second boundary-value problems as well as the linear boundary-value inverse
heat-conduction problem with fixed heat collector and boundary have been solved., Account of
the finite heat-propagation velocity increases the boundary-value inverse heat-conduction
problem stability.

At the present time two approaches exist to solve boundary-value inverse heat-conduction problems
(IHCP). The first group of methods of solving boundary-value IHCP (direct methods) use the parabolic equa-
tion of heat conductivity or its general form [1-6], It is well known [6] that the boundary-value IHCP for the
parabolic equation of heat conduction is incorrect due to its instability. This circumstance imposes restric-
tions on the parameters of calculation schemes used in solving the problem (approximate step in time, number
of iterations, etc.), and, consequently, restricts the accuracy of the solutions obtained (particularly for fast
flows and quickly varying processes). A second approach in solving the boundary-~value IHCP consists of using
regularized methods of its solution [5, 7, 8], in which one uses the transition from the incorrect statement of
the problem to the correct one, which significantly enhances the stability of the boundary-value IHCP, It is,
obviously, possible to propose many ways of this transitions, Among the variety of these methods, one must
choose those in best agreement withtthe real physical processes occurring in heat transfer. It is shown below
that account of the finite rate of heat propagation is a natural "regularizing" factor which enhances the stability
of boundary-value THCP,

The hyperbolic heat-conduction equation [4, 9, 10]
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describes nonstationary heat-conduction process more accurately than does the parabolic equation, In this
paper we derive several integral forms for solving linear inverse boundary-value problems of heat conduction
in the one-dimensional case, and a method of their solution is given, At the same time, the corresponding
direct boundary-value problems are solved for arbitrary conditions at the boundaries, During the process of
solving THCP, the suggested method can approximately determine the velocity of heat-propagation, and, con-
sequently, the relaxation constant, which is an additional advantage of the method.

Statement and Solution of Direct Boundary-Value Problems for a Semiinfinite Bar. The thermal flow
q(x, t) is related as follows to the temperature u(x, t), obeying the hyperbolic equation [4, 9, 10]:
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Taking into account the vanishing condition q(x, 0) = 0, Eq. (2) is easily integrated
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Knowing the temperature u(x, t), by Eq. (2a) one can calculate the thermal flow in any point of the body, In
stating the problem of heating a semiinfinife bar (x€[0, =»]), we apply the initial homogeneous conditions
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At the left boundary of the bar (x = 0) we choose two types of boundary conditions
u(0, t)y =u,(f) (4a)

or
900, ) =q,(). (4b)

It is assumed that temperature u; (t) of the medium and the thermal flow q,(t) at the surface of the bar can be
arbitrary functions of time. Using Eq. (2), we replace boundary condition (4b) by the equivalent, but more
convenient
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Corresponding to the type of boundary condition at infinity, one of the following requirements must be satis-
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The problems stated are solved by the operator method under the assumptmn that A, a, B are constant quanti-

ties, The Laplace transforms of u(x, t), q(x, t), wt), q4(t) and q1(t) are denoted by Uz, p), Q, p), Ui (),

Qi (p) and Qf(p), respectively, In the transform region we have two solutions, corresponding to the various
types of boundary conditions:

u (oo, 1) = 0; —=0. (5)

U =U(p)exp(— BV p*>-+ p/n), (6a)
U = Qi (p)exp (— B v/ p*+ p/m)/AV P>+ p/m. (6b)

Returning to function u(x, t), we obtain for it the corresponding expressions [11, 12]:
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In Eqgs. (7) E() is the function of unit jump [11], equal to 0 at £ < 0, and I and I; are first-order Bessel func-
tions of an imaginary argument. Integration by parts of the right-hand side of Eq. (7b) with account of (4c)
leads to a different form of the solution u(x, t) for boundary condition (4b):

u = E (t—Bx) HE g1 (¢ — BY) exp (— x/2B) +
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In Eq. (7c) the solution u(x, t) is expressed in terms of the thermal flow q; (t) on the bar, and not in terms of the
auxiliary function qq({t). Introducing the dimensionless quantities

Fo = ai/x?2, Fo =at/x?, vy =df/x, (8)

Eqgs. (7a) and (7b) can be written in the form

Fon—'y , ,
u (y, Fo) = E (Fo—¥) {ul (Fo— ) exp (— 1/2y) -+ | K (Fo —Fo’, y)u, (Fo') dFo }, (9a)
b
where
b ( o Y2)
= . SO exp (-— Fo/2vy?), 9a

K (Fo, ¥) 27 Vi =7 p( ) (92%)
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u(y, Fo) = E (Fo—7) {-Vf— g (Fo—yexp(—1/29) + | 'K (Fo—Fo', 1), (Fo)) Fo'}, (9b)
0

where
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The integral relations (9a), (9b) obtained between the femperature u(y, Fo) inside the body and the tempera-
fure uy(Fo) at the boundary of the bar or the thermal flow at the surface of the bar can be used to solve various
types of problems. If function uy(Fo) or q;(Fo) is known, Egs. (9a), (9b), and (9a%, (9b*) are the solutions of
the corresponding direct boundary-value problems,

Using the dominant terms of the asymptotic Bessel functions I, and Ij, it can be shown that under the
condition (Fo—Fo') > v the limiting transition 8 — 0 in Eqgs. (9) leads to the corresponding solutions of the
boundary-value problems for the parabolic equation of thermal conduction. If 8 is small, but 8 = 0, then for
small Fo the solutions of (9) can differ from the corresponding solutions of the parabolic equation; with in-
creasing Fo this difference diminishes, The problem of heating a semiinfinite bar with boundary conditions
of the first kind u; = const was treated in [10]. The physical effects occurring in the transition from a para-
bolic to a hyperbolic heat-conduction equation were analyzed in similar detail (the presence of a propagating
shock heat wave, restriction to a maximum heat flow and heat-transfer coefficients, etc.). Obviously, a
noticeable difference in the solutions for small Fo can be observed for fast flows of intense thermal processes
and processes at very low temperatures,

Solution of Linear Boundary-Value IHCP, Integral relations (9) can be used for solving inverse problems
on recovering the temperature uy(Fo) or the thermal flow qiFo) at the edge of the bar from the temperature
¥ (Fo) measured in the internal cross section of the bar at a distance x from the edge. In this case Egs. (9)
are Volterra linear integral equations of the second kind for the unknown functions zy(Fo) = {u (Foy, qy (Fo)}:

Fo*

uFo*+vy) = § K (Fo* —Fo" 1y, )2, (Fo')dFo' + ngz, (Fo*) exp (— 1/2y). (10)
]

Here
Fo* = Fo—vy; 1y = landn, = xy/A (10a)

for boundary conditions of the first and second kind, respectively, and the kernels K(Fo, y) of Eq. (10) are de-
termined by Eqs. (9a*) and (9b%. To solve Eq. (10) one may use the well-known numerical and analytic methods
[13], such as the Neumann series, the collection method, application of quadrature equations, etc.

The parameter vy in the integral equation (10) can be either given or unknown. In the latter case at some
definite value 7y, of the parameter vy, the function ZYo(FO) will be near the real temperature or the thermal flow
at the wall, therefore it can be taken as the approximate solution of the boundary-value IHCP. The quantity
1/ can be considered to be the approximate value of the heat-propagation velocity in the solid. The quantity
By is most simply determined as follows, Putting in Eq. (10) Fo* = 0, we obtain a simple relation between the
initial value z,(0) and the measurable temperature u(Fo)

z, 0y = u (y) exp (1/2v)/n,. (11)

Due to the finiteness of the heat propagation velocity the function u(Fo) must have a discontinuity of first kind
at Fo = v, therefore the quantity z,(0) as a function of y also has a discontinuity of first kind at vy = y,. Figure
1 shows the curve u(Fo) used in the numerical experiment. The vy, value was taken equal to v, = 0.06. In the
same figure we show the y dependence of the initial zy(0). The use of the experimental curves for u(Fo) in
constructing the function z(0) leads to the consequence that, starting with some value of vy, the quantity zy(0)
increases quickly from the initial vanishing value. This boundary value of y can be approximately taken to be
Yo

We form the function &(y), taking into account the behavior of the solution z},(Fo) and its derivative
dz. (Fo)/dFo:

Fo*

®(y) = ||u Fo* -+ ) — | K (Fo* —Fo' -+, v) 2, (Fo’) dFo —Mz, (Fo*) exp(1/2v)]| + byz, (Fo)j + b, f
. 0

dz, (Fo)
;Fo h [2)
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Fig. 1. The relative temperature u(¥o) at a distance x from
the edge of the bar and the corresponding quantity zy(O): 1) the
function u(Fo); 2) behavior of the initial value Zy(0) at the edge
of the bar, constructed by Eq. (11).

Fig, 2, Dependence of the recovered relative temperature zy(Fo)
at the edge of the bar for various values of y: 1, 2) exact and cal-
culated curves of zy (Fo); 3) oscillating curve zy(Fo) for v = 0.0601;
4) zy(Fo) for y = 0.05,

The norms in Eq, (12) are taken in the L, space, and b and b; are weight coefficients, Since for parameter
values ¥ near the v,, the solution zy(0) oscillates for a suitable choice of the coefficients by and by, a minimum
of the functional & is achieved at a continuous solution corresponding to ¥ = v,. Therefore, the parameter v,
can be chosen by the condition

P (o) = mgn P (y)- (12a)

Numerical calculations recovering the temperature at the edge of the bar from function u(Fo), illustrated in
Fig, 1, showed the effectiveness of choosing the parameter y, from Egs. (12), (12a). Thus, as a result of
numerical calculations, the value v, = 0.060001 was obtained instead of the exact value vy, = 0.06. In the cal-
culations it was assumed that the weight coefficients are by = by = 1 and the functional ¢ was replaced by the
corresponding sum over a uniform partition of the points Fo with step H = 0,02, Integral equation (10) was
solved by the method described below. Figure 2 (curves 1 and 2) shows the practically coinciding exact solu-
tion and results of calculations by Eqgs. (10), (12), and (12a). The oscillating curves zy(Fo) for ¥ = 0,061 > y,
and vy = 0,05 < vy, are shown on curves 3 and 4.

A method of solving integral equations, based on approximating the solution by discontinuous step func-
tions, is widely used in engineering practice. We apply this method to solve integral equation (10). We divide
the interval I= [0, Fo’fnax] into N subintervals Ix=[(k — 1)H, kH] by the points Foy = kH, where Fox = kH,
where H = Fo¥ . We solve Eq., (10), assuming that at each subinterval Iy the solution zY(Fo) is approxi-
mated by the function

z,(Fo) = {z, (kH) + 2, [(k — 1) H1}/2; Fo€l,. (13)

In this way integral equation (10) reduces to a system of algebraic equations with a friangular matrix for the
values of z(kH)

B
2 dn—sz, (1H) = u(kH + v) — dz2, (0), (14)
1=
where
1 H
do =y exp (= 1/29) + — (KH+v—Ye&, (14a)
4]
. 1 #

=]
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dyi = s + dimipr, B—1>1, (140)

and the quantity zY(O) is determined by Eq. (11)., The values of zy(kl) are conveniently calculated by using the
recurrence equation:

h—1
z, (kH) = -‘:— {u (kH + y) — dxz,, (0) — Y dr, (lH)}.
0

==}

(15)

The calculations have shown that the error in solving the infegral equation (10) by the method suggested is
small. It can be estimated in the usual way [14]. The spline method can be utilized to obtain a smooth solu-
tion z,(Fo). We point out that the Jordan lemma is satisfied for the Laplace transforms U, {p) and Q,(p), ob-
tained from Edq. (6) with account of expression (4c). Therefore, operation calculus methods can be used to
find the original uy(Fo) and q; (Fo).

Thus, account of the finite heat propagation velocity by means of the hyperbolic equation makes it pos-
gible to solve the linear boundary-value IHCP accurately. The method suggested for solving the IHCP enables
one to determine at the same time the heat propagation velocity.

NOTATION
A is the thermal conductivity;
a is the thermal diffusivity;
B is the reciprocal of heat propagation velocity;
p is the Laplace variable;
Fomax is the maximum value of Fo.
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